This page looks best with JavaScript enabled

torch.view

 ·  ☕ 1 min read
  • 同じ順序でメモリ上に展開されてないとダメだから注意
1
2
3
4
>>> torch.t(x).view(-1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: invalid argument 2: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Call .contiguous() before .view(). at /Users/soumith/code/builder/wheel/pytorch-src/aten/src/TH/generic/THTensor.cpp:237
1
2
3
4
5
6
x = torch.Tensor([[[ 1.,  5.,  9.],
                  [ 2.,  6., 10.],
                  [ 3.,  7., 11.],
                  [ 4.,  8., 12.]]])
x = x.unsqueeze(0)
print(x.transpose(-1,-2).view(1,-1,2))
  • ↑ これだとメモリ上に展開されてないからダメ
1
2
3
x = torch.Tensor([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
x = x.unsqueeze(0).transpose(-1,-2)
print(x.transpose(-1,-2).view(1,-1,2))
  • ↑こっちだとOK
Share on

YuWd (Yuiga Wada)
WRITTEN BY
YuWd (Yuiga Wada)
機械学習・競プロ・iOS・Web