Posts
共変量シフト
· ☕ 1 min read
BatchNormによって減らすことができる BNは学習対象のパラメタを持つので注意 共変量シフトを抑えながら, レイヤの表現量を維持するためにパラメタ $\gamma, \beta$ が使われる https://gyazo.com/b54205f667854ac7219c5f7eb002c761 後で読む https://zenn.dev/takoroy/scraps/b26c76a9f94069 ...

Layer normalization
· ☕ 1 min read
Post-LN 通常のTransformerだとこっち 性能が高い 不安定 Pre-LN (相対的に)性能は低い 安定 DeepNet DeepNetでは, DeepNormという手法を用いることで性能・安定性ともに向上させる これによって, 層数をバカでか数にしても, 安定して学習させることができる ...

重みの初期化
· ☕ 1 min read
nn.init.hogehoge() で初期化できる 例 nn.init.xavier_uniform_(ln.weight) # Xavierの初期値 PyTorchの場合, デフォルトはHe ...

DTW距離
· ☕ 1 min read
2つの時系列データ $\boldsymbol{s}, \boldsymbol{t}$の類似度を計算 $\boldsymbol{s}, \boldsymbol{t}$をそれぞれ軸としたグリッドに対して, 最小のパスをDTWとする ...


機械学習の解釈性
· ☕ 1 min read
特徴量の重要度 重要度を測るには, その特徴量を使えない状態を近似的に作り出せば良い PFI Permutation Feature Importance 特徴量 $X_i$ だけをシャッフルして, シャッフル前と後とで予測結果を比較 ( $X_j (j \neq i)$は固定) 本当に特徴量 $X_i$ が重要なら, シャッフルによって予測結果がブレるはず SHAP SHapley Additive exPlanations 特徴量 $X_i$があるときと無いときとで予測結果を比較 ...

時系列予測
· ☕ 1 min read
Statistical and Machine Learning forecasting methods: Concerns and ways forward https://journals.plos.org/plosone/article/file?id=10.1371%2Fjournal.pone.0194889&type=printable ...

AR・MA・ARMA・ARIMA・SARIMA
· ☕ 1 min read
AR Autoregressive Model 自己回帰モデル t-1の観測値と誤差項epsで回帰 AR(1) $$y_t = \phi y_{t-1} + \epsilon_t + \mu$$ MA Moving Average 移動平均モデル ARのように観測値メインではなく, 誤差項=差分をメインに計算する MA(1) $$y_t = \phi \epsilon_{t-1} + \epsilon_t + \mu$$ ARMA ARとMAを加算しただけ ARIMA d階差分系列 $y_t - y_{t-d}$をARMAで記述する ARIMA単体でAR・MA・ARMAを表現できる SARIMA ARIMAに加え ...

ARIMA
· ☕ 1 min read
ARIMA: auto regressive integrated moving average 自己回帰移動平均モデル ...

Informer
· ☕ 1 min read
$P(key|query)$が高いqueryを上位X分だけ取り出してself-attentionを計算 - LogSparse Transformerのようなヒューリスティックな手法から脱却 Self-attention Distilling self-attentionの各層をpoolingでダウンサンプリングして蒸留 ...