JavaScriptを有効にしてください

Equalization Loss

 ·  ☕ 1 min read
  • headはlossを小さく, tailはlossを大きくしたい
  • 重み wiを使ってlossを設計する (二値の場合)
    LEQL=j=1Cwjlog(pj^), wj=1E(r)Tλ(fj)(1yj)

In this equation, E(r) outputs 1 when r is a foreground region proposal and 0 when it belongs to background. And fj is the frequency of category j in the dataset, which is computed by the image number of the class j over the image number of the entire dataset. And Tλ(x) is a threshold function which outputs 1 when x < λ and 0 otherwise. λ is utilized to distinguish tail categories from all other categories and Tail Ratio (T R) is used as the criterion to set the value of it

  • TRを元に λ を決定する (Tail Ratio)

TR(λ)=jCTλ(fj)NjjCNj

  • 多クラス問題の場合は,

LSEQL=j=1Cyjlog(pj~), pj~=ezjk=1Cwk~ezk

wk~=1βTλ(fk)(1yk)

  • でOK




共有

YuWd (Yuiga Wada)
著者
YuWd (Yuiga Wada)
機械学習・競プロ・iOS・Web